25 research outputs found

    A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields

    Get PDF
    Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain useful insights for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of the structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are nontrivial to catch. Here, we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Position (SOAP). We compare and classify a set of 13 FFs, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernel-based metrics allows us to compare, discriminate, and correlate different FFs at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling nonaverage events (originating from local transitions), for example, the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows us to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit versus explicit solvent FFs

    Automatic Middle-Out Optimisation of Coarse-Grained Lipid Force Fields

    Get PDF
    Automatic data-driven approaches are increasingly used to develop accurate molecular models. But the parameters of such automatically-optimised models are typically untransferable. Using a multi-reference approach in combination with an automatic optimisation engine (SwarmCGM), here we show that it is possible to optimise coarse-grained (CG) lipid models that are also transferable, generating optimised lipid force fields. The parameters of the CG lipid models are iteratively and simultaneously optimised against higher-resolution simulations (bottom-up) and experimental data (top-down references). Including different types of lipid bilayers in the training set guarantees the transferability of the optimised force field parameters. Tested against state-of-the-art CG lipid force fields, we demonstrate that SwarmCGM can systematically improve their parameters, enhancing the agreement with the experiments even for lipid types not included in the training set. The approach is general and can be used to improve existing CG lipid force fields, as well as to develop new custom ones.Comment: Paper (Pages 1-16) + Supporting Information (Pages 17-40

    Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG.

    Get PDF
    After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the development of accurate molecular models, but they typically make use of specifically designed interaction potentials that transfer poorly to molecular systems or conditions different than those used for model calibration. As a proof of concept, here, we employ SwarmCG, an automatic multiobjective optimization approach facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in building blocks of lipid models within the framework of the general Martini CG FF. As targets of the optimization procedure, we employ both experimental observables (top-down references: area per lipid and bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), which respectively inform on the supra-molecular structure of the lipid bilayer systems and on their submolecular dynamics. In our training sets, we simulate at different temperatures in the liquid and gel phases up to 11 homogeneous lamellar bilayers composed of phosphatidylcholine lipids spanning various tail lengths and degrees of (un)saturation. We explore different CG representations of the molecules and evaluate improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a DOPC/DPPC mixture. Successfully optimizing up to ∼80 model parameters within still limited computational budgets, we show that this protocol allows the obtainment of improved transferable Martini lipid models. In particular, the results of this study demonstrate how a fine-tuning of the representation and parameters of the models may improve their accuracy and how automatic approaches, such as SwarmCG, may be very useful to this end. </p

    Development of statistical tools for the evaluation of virtual screening methods : predictiveness curves & Screening Explorer

    No full text
    Les méthodes de criblage virtuel sont largement utilisées dans le processus de conception de médicaments afin de réduire le nombre de composés à tester expérimentalement. Cependant, les résultats obtenus par criblage virtuel ne sont que des prédictions et leur fiabilité n'est pas garantie. L'évaluation de ces méthodes est donc essentielle pour guider le bioinformaticien dans le choix de l'outil et du protocol adaptés dans les conditions de son expérience. Dans une première étude, nous avons développé une nouvelle métrique pour l'analyse des résultats de criblage : la Courbe de Prédictivité. Cette métrique permet une analyse fine de la pertinence des scores d'affinité pour la détection de composés actifs et complète les métriques existantes, permettant une meilleure compréhension des résultats de criblage. Lors de notre projet suivant, nous avons souhaité faciliter ce processus d'analyse en intégrant l'ensemble des métriques de criblage virtuel dans un outil web interactif : Screening Explorer. Une seconde partie de ma thèse a consisté en la recherche de nouveaux inhibiteurs du VIH (Virus de l’Immunodéficience Humaine). L'équipe génomique de notre laboratoire a identifié plusieurs gènes dont l'expression influence le développement du SIDA, révèlant ainsi de potentielles cibles thérapeutiques. Une étude bibliographique a permis d'identifier plusieurs composés inhibiteurs de ces cibles. La société Peptinov, associée à notre laboratoire, va prochainement estimer le potentiel thérapeutique de ces composés dans des essais in vitro (i) d'infection par le VIH, (ii) de prolifération virale et (iii) de réactivation virale.Virtual screening methods are widely used in drug discovery processes in order to reduce the number of compounds to test experimentally. However, virtual screening results are only predictions and their reliability is not guaranteed. Evaluating these methods is crucial to guide the bioinformatician in the choice of the right tool and protocol according to the conditions of his experiment. In a first study, we developed a new metric to analyze the results of virtual screening: the Predictiveness Curve. This metric allows to finely analyze the relevance of binding scores for the detection of active compounds and complete existing metrics, allowing a better comprehension of screening results. In a following project, we facilitated the analysis process by integrating all of the virtuel screening metrics in an interactive tool: Screening Explorer. The second part of my thesis consisted in the research of novel HIV inhibitors. The genomic team of our laboratory identified several genes whose expression influence the development of AIDS, therefore revealing potential therapeutic targets. A bibliographic study allowed to identify compounds that can inhibit those targets. The company Peptinov, associated to our laboratory, is currently estimating the therapeutic potential of the compounds in vitro in assays of (i) HIV infection, (ii) viral proliferation and (iii) viral reactivation

    Développement d’outils statistiques d’évaluation de méthodes de criblage virtuel : courbes de prédictivité & Screening Explorer

    No full text
    Virtual screening methods are widely used in drug discovery processes in order to reduce the number of compounds to test experimentally. However, virtual screening results are only predictions and their reliability is not guaranteed. Evaluating these methods is crucial to guide the bioinformatician in the choice of the right tool and protocol according to the conditions of his experiment. In a first study, we developed a new metric to analyze the results of virtual screening: the Predictiveness Curve. This metric allows to finely analyze the relevance of binding scores for the detection of active compounds and complete existing metrics, allowing a better comprehension of screening results. In a following project, we facilitated the analysis process by integrating all of the virtuel screening metrics in an interactive tool: Screening Explorer. The second part of my thesis consisted in the research of novel HIV inhibitors. The genomic team of our laboratory identified several genes whose expression influence the development of AIDS, therefore revealing potential therapeutic targets. A bibliographic study allowed to identify compounds that can inhibit those targets. The company Peptinov, associated to our laboratory, is currently estimating the therapeutic potential of the compounds in vitro in assays of (i) HIV infection, (ii) viral proliferation and (iii) viral reactivation.Les méthodes de criblage virtuel sont largement utilisées dans le processus de conception de médicaments afin de réduire le nombre de composés à tester expérimentalement. Cependant, les résultats obtenus par criblage virtuel ne sont que des prédictions et leur fiabilité n'est pas garantie. L'évaluation de ces méthodes est donc essentielle pour guider le bioinformaticien dans le choix de l'outil et du protocol adaptés dans les conditions de son expérience. Dans une première étude, nous avons développé une nouvelle métrique pour l'analyse des résultats de criblage : la Courbe de Prédictivité. Cette métrique permet une analyse fine de la pertinence des scores d'affinité pour la détection de composés actifs et complète les métriques existantes, permettant une meilleure compréhension des résultats de criblage. Lors de notre projet suivant, nous avons souhaité faciliter ce processus d'analyse en intégrant l'ensemble des métriques de criblage virtuel dans un outil web interactif : Screening Explorer. Une seconde partie de ma thèse a consisté en la recherche de nouveaux inhibiteurs du VIH (Virus de l’Immunodéficience Humaine). L'équipe génomique de notre laboratoire a identifié plusieurs gènes dont l'expression influence le développement du SIDA, révèlant ainsi de potentielles cibles thérapeutiques. Une étude bibliographique a permis d'identifier plusieurs composés inhibiteurs de ces cibles. La société Peptinov, associée à notre laboratoire, va prochainement estimer le potentiel thérapeutique de ces composés dans des essais in vitro (i) d'infection par le VIH, (ii) de prolifération virale et (iii) de réactivation virale

    Lessons learned from multi-objective automatic optimizations of classical three-site rigid water models using microscopic and macroscopic target experimental observables

    No full text
    The development of accurate water models is of primary importance for molecular simulations. Despite their intrinsic approximations, three-site rigid water models are still ubiquitously used to simulate a variety of molecular systems. Automatic optimization approaches have been recently used to iteratively optimize three-site water models to fit macroscopic (average) thermodynamic properties, providing “state-of-the-art” three-site models that still present some deviations from the liquid water properties. Here we show results obtained by automatically optimizing three-site rigid water models to fit a combination of microscopic and macroscopic experimental observables. We use Swarm-CG, a multi-objective particle-swarm-optimization algorithm, for training the models to reproduce the experimental radial distribution functions of liquid water at various temperatures (rich in microscopic-level information on, e.g., the local orientation and interactions of the water molecules). We systematically analyze the agreement of these models with experimental observables and the effect of adding macroscopic information into the training-set. Our results demonstrate how adding microscopic-rich information in the training of water models allows achieving state-of-art accuracy in an efficient way. Limitations in the approach and in the approximated description of water in these three-site models are also discussed, providing a demonstrative case useful for the optimization of approximated molecular models in general

    Swarm-CG: Automatic Parametrization of Bonded Terms in Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization

    No full text
    We present Swarm-CG, a versatile software for the automatic parametrization of bonded parameters in coarse-grained (CG) models. By coupling state-of-the-art metaheuristics to Boltzmann inversion, Swarm-CG performs accurate parametrization of bonded terms in CG models composed of up to 200 pseudoatoms within 4h-24h on standard desktop machines, using an AA trajectory as reference and defaultsettings of the software. The software benefits from a user-friendly interface and two different usage modes (default and advanced). We particularly expect Swarm-CG to support and facilitate the development of new CG models for the study of molecular systems interesting for bio- and nanotechnology.Excellent performances are demonstrated using a benchmark of 9 molecules of diverse nature, structural complexity and size. Swarm-CG usage is ideal in combination with popular CG forcefields, such as e.g. MARTINI. However, we anticipate that in principle its versatility makes it well suited for the optimization of models built based also on other CG schemes. Swarm-CG is available with all its dependencies via the Python Package Index (PIP package: swarm-cg). Tutorials and demonstration data are available at: www.github.com/GMPavanLab/SwarmCG

    Screening Explorer–An Interactive Tool for the Analysis of Screening Results

    No full text
    Screening Explorer is a web-based application that allows for an intuitive evaluation of the results of screening experiments using complementary metrics in the field. The usual evaluation of screening results implies the separate generation and apprehension of the ROC, predictiveness, and enrichment curves and their global metrics. Similarly, partial metrics need to be calculated repeatedly for different fractions of a data set and there exists no handy tool that allows reading partial metrics simultaneously on different charts. For a deeper understanding of the results of screening experiments, we rendered their analysis straightforward by linking these metrics interactively in an interactive usable web-based application. We also implemented simple consensus scoring methods based on scores normalization, standardization (<i>z</i>-scores), and compounds ranking to evaluate the enrichments that can be expected through methods combination. Two demonstration data sets allow the users to easily apprehend the functions of this tool that can be applied to the analysis of virtual and experimental screening results. Screening Explorer is freely accessible at http://stats.drugdesign.fr

    A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields

    No full text
    Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain insights useful for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are non-trivial to catch. Here we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Positions (SOAP). We compare and classify a set of 13 force fields, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernels-based metrics allows us to compare, discriminate and correlate different force fields at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling non-average events (originating from local transitions), such as for example the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit vs. explicit solvent force fields.</div
    corecore